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Broken Symmetry in Ideal Magnetohydrodynamic Thrbulence

John V. Shebalin* S

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23681, USA

A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible,

three-dimensional fluid and magneto-fluid turbulence has been completed. The results confirm that ideal

magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due

essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken

symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent 0

magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the

total energy.

"Research supported by the National Aeronautics and Space Administration. This work was performed while the author

was in residence as a Visiting Scientist at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23681.
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1 Introduction

Several years ago, a numerical study of isotropic, inviscid, incompressible, two-dimensional (2D) turbu- 0

lence indicated that ideal magnetohydrodynamic (MHD) turbulence was non-ergodic [1]. A Fourier spectral 4

method was used, and the non-ergodicity manifested itself in the appearance of significant, non-zero time-

averages for the Fourier coefficients of the turbulent magnetic field. These results contrasted with the 0

predictions of canonical ensemble theory [21 and indicated the presence of a dynamically broken symmetry.

Here, this work is extended in two ways. First, the dynamics become fully three-dimensional (3D),

and second, a more accurate (third-order) time-integration scheme is used (a comparison is made with the

second-order scheme used previously). The results are qualitatively the same as previously seen, although a

stronger effect is observed. Also, the source of the broken symmetry is more explicitly identified.

2 Basic Equations

The equations which describe ideal, incompressible 3D fluid and magneto-fluid dynamics are

OtB = Vx(uxB) (1)

tw = Vx(uxw+jxB) (2)

Here, the fluid velocity is u, the vorticity is w = V x u, the magnetic field is B = b + B. (where b is 0

the turbulent part and B,, is a constant, externally imposed part), and the current is j = V x b. Also,

Vu = V B =0.

If B - 0 for all time, then (1) is identically satisfied and (2) assumes the vorticity form of the incom- 0

pressible Euler equation. If B, - 0 while b 6 0, then (1) and (2) are unchanged, i.e., symmetric, under the

substitution b -- -b. If, however, B, 5- 0 also, then the equations are no longer symmetric under b - -b.

Note that these equations are inviscid. It is well known that solutions to these equations are quite 0

different from those for dissipative equations, even if the viscosity and resistivity become very small, so long

as they are not identically zero. However, it is possible to determine a priori statistical solutions in the

inviscid case (as will be discussed presently), while it has not proven possible to do this in the dissipative

case.
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This provides for a very practical use of the results presented herein, that is, as a test of the correctness

of any computer code which attempts to simulate incompressible, homogeneous, dissipative turbulence. In

any such code. the viscosity (and resistivity) can be set identically to zero: the statistical properties of a

numerical solution must then be described by the inviscid theory described here. There are, however, some

refinements which must be incorporated into existing theory; these refinements, the existence of broken

symmetry and non-ergodicity in ideal (3D) MHD turbulence, are the subject of this paper.

3 Canonical Ensembles

0

The theory of canonical or 'absolute equilibrium' ensembles, as it applies to homogeneous turbulence, has

been discussed extensively before [1, 3] (and the many references therein). In brief, the physical variables u,

b, ,w, and j are expanded in truncated Fourier series, for example: 0

b(x,t) = NV/2 2 b(k,t)eikx. (3)
k-

Here, the sum (and each similar sum appearing henceforth) is over all k such that kmi,,n _ Jki ! kmao < N/2, *
where N is the number of points in each of the three spatial dimensions. Since the various fields, such as b(x),

are real, their coefficients satisfy b(k) = b*(-k), where '*' denotes complex conjugation (here and henceforth,

explicit time-dependence will be dropped for brevity). Also, u(k) = ik-2k x w(k) and j(k) = ik x b(k),

and V . b(x) = 0 -. ik . b(k) = 0, etc.

The independent real and imaginary parts of the coefficients u(k) and b(k) can be used to label the axes

of a multidimensional phase space. The corresponding dynamical system is described by a single point in

the phase space, which moves about as the system evolves in time. The probability that the system point

is in any part of phase space can be described by a canonical distribution function which depends only on a

small set of conserved quantities, the integral invariants of the dynamical system. Once the joint probability

distribution has been found, then the equilibrium energy spectra (kinetic and magnetic) are determined, 0

even though u(k) and b(k) are random variables.

In the case of isotropic, incompressible 3D Euler turbulence (B - 0), the integral invariants are the

energy E and the kinetic helicity H1. For ideal, isotropic, incompressible 3D MHD turbulence with Be S 0, 0

the integral invariants are the energy E, the cross helicity i., and the magnetic helicity Hm; if B. 4 0, then
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Hf is no longer conserved, although E and H, are still integral invariants. These three different situations

will now be presented in more detail.

3.1 Euler Turbulence

The integral invariants for incompressible 3D Euler turbulence [4, 51 are

1 ,... 1 k

E = F-- • Iu(k)12  and H= 2-= T u(k) . w'(k), (4)

while the distribution function is

D=Cexp(-aE-OH&) where C= k- a ,•2•)4" (5)
k.,,g.

The product above (and each product appearing henceforth) is taken over all k such that k• _< IkI < km.,

but only over independent values of k, i.e., if k is used, then -k is not. Using this distribution function, an •

expectation value can be defined as

(Q) JQD fi d3u(k), (6)

with which expectation values of the moments of the Fourier coefficients can be found:

3N~a
(uR(k)) = (u,(k)) = 0, (IuR(k)12 ) = (Iuz(k)12 ) = 23(N2

-3NV30k 2

and (uR(k). wR(k)) = (u,(k) . w,(k)) - 2 (2 -3 2k2)2 (7)

where the subscripts R and I denote real and imaginary parts, respectively, of the complex coefficients, and

where all the components of u(k) for a given k have equal expectation values. A straightforward algebraic 0

manipulation of these expectation values yields

Z(n) and 3 (Hk) 0
(E) (Q) - (Hk) 2  (--) (8)

where

z = Y-,V3 I and Q = -L

2N3k Iu(k)1

Note that the expected value of the mean squared vorticity (the enstrophy fQ) is determined once the

expectation values (7) of the Ju(k)j2 are known.
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Although the enstrophy 0 is not a conserved quantity, it does have an expectation value, so that the
39

parameters a and 4 are functions of only one unknown quantity, (Q). The quantity Z is the ratio of the

number of independent values of k to N', the total number of points in the spatial grid.

3.2 Ideal MHD Turbulence

The integral invariants of ideal, incompressible 3D MHD turbulence with B. = 0 [61 are

1 11 2
E- , • [u(k12 + Ib(k)12], H//--• Z u(k) b (k),

& ... R k .. ,

and H.. = 2- • k 2 j(k) " b(k), (9)

while the distribution function is

k- [(, - 32/4 )2 - .2 2/2(0D= Cexp(-oE-3H,-'yHm), where C=fl[ ( - 4 N/12  j/ . (10

(Please note that the formulas appearing in this subsection correct those which appeared previously [1].)

I'sing this distribution function, expectation values (where (6) now includes integration over the inde-

pendent components of the b(k)) for moments of the Fourier coefficients can be found:

(uR(k)) =(u,(k)) =0, (IuR(k)12 ) = (Iua(k)12 )= 3- v a(,c2-'12/4 - 'Y2/k2) 1

(blk)) = (bi(k)) = 0. (IbR(k)1 2) = (1bl(k)12) = -- N3 a (-(2 _ 2/4) 1

3 F (,2 - 1*21)
(UR(k)- b I(k)) = (u,(k) .b;(k)) = -' (V3  _ 2 _ , 2

1 3-/4 - 0i2 -Y 1

Jn(k) bý(k)) = jl(k) b;(k)) = -" , _ -- / (11)
2 -1 '/ 0 2 

- V' k

where all the romiponents of ui(k) for a given k hiave equal expectation vahlus, and wher, all the coiimponients

of i1(k) for a giveii k also have equal exlpvctation values Note that the erlergý speltrra in tll h M il) cawe (II)

peak at low k = Iki. while in the, Euler rase (7). it peaks at high k
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A straightforward algebraic manipulation of these expectation values yields

ZR (R + 1) (E) 0 -(R+ 1) (H,) m

2 R(E)2-(R+1)2(H )2 RR(E)

4'

(R -1) (E) awhere R = (Em) (12)
(R + 1) (H.) , we(2

Thus a, 0, and 'y are functions of only one unknown quantity, R, which is the ratio of the expectation values

of the magnetic part of the total energy to kinetic part of the total energy.

The integral invariants of ideal, incompressible 3D MHD turbulence with B. # 0 are only E and He, as

given above, while H.. is no longer conserved. In this case, R = I and = 0.

3.3 Distribution Parameters

The parameters a, 3, and 7, which appear in the canonical distribution functions, must be given specific

values in order that definite predictions can be made. This can be done in a number of ways. First, it

can be assumed that the integral invariants of the various cases have fixed values (although they actually

fluctuate slightly in the time evolution of a canonical system). The distribution parameters then vary only 0 0

with respect to a single quantity: (i2) for 3D Euler turbulence and R for ideal 3D MHD turbulence (except

for the case where B, 0 0. where R E 1). The equilibrium entropy [1], S = S, - log C, where C is the

normalizing coefficient of the distribution function, is thus also a function of a single quantity. Since S is a 0

minimum with respect to the distribution parameters [7], then this fact can be used to uniquely determine

(f0) or R, as the case may be. Note that this can be done prior to any numerical simulation of the time

evolution of an isotropic, inviscid turbulent system. 0

A second method is to run a numerical simulation and actually determine the time-averaged values Q

of all the quantities Q which are required, so that 0 can be substituted for (Q). In particular. 0l - (Ql) or

ft - R. A third, and more practical method, is to use the time-averaged values of the necessary integral 0

invariants, but determine (fl) or R through a least-squares procedure. This third method will turn out to

be the most useful.

Once the canonical predictions of the moments of u(k) and b(k) are available, and numerical simulations
0

have produced corresponding time-averages, then comparisons can be made. This is essentially a test of the

0
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erodzcity of the various dynamical systems, i.e., the equivalence of ensemble and time averages. Numerical S
results, including these time averages, are presented next, followed by a discussion addressing any anomalies

which are observed.

4 Numerical Results 0

As in the previous work [1], a Fourier spectral method [9] with shifted-grid dealiasing [10] was used to

solve the dynamical equations numerically. In the previous effort, however, the time-integration method

was a second-order Runge-Kutta scheme (RK2), while the method primarily employed in this work was a 0

third-order scheme, consisting of an Adams-Bashforth predictor coupled with an Adams-Moulton corrector

(AB3) [8]. The advantages of AB3 over RK2 are higher accuracy and higher speed, although slightly more

storage was required in computer memory. In order to better relate the 3D results obtained here to the 21) 0

ones obtained previously [1], two 31) runs which had used AB3 were partially re-run using RK2. with initial

conditions remaining the same.

The numerical simulations performed in the course of this work are presented in Table 1. All runs were * *
done on a Cray YMP. using a 163 grid with k,2, 1 = 56 and At = 0.001. Each run is designated by three

characters: the first is either E (for Euler) or M (for MHD). the second is a number representing a different

set of initial conditions, and the last denotes the time-integration method used, A (for A133) or R (for RK2). 0

(The 'initial conditions' include the values of B, and km.n, as well as {w(k). b(k): kAn < Ikl < km,}) at

t = 0.) Each of the integral invariants listed in Table I fluctuated no more than a few parts per million

during their respective simulations.

In each of the simulations, the initial spectra satisfied tu(k)p2  [ lb(k)l2 - k 4 exp(-2k2/k 2) with k, = 2

(although the exact shape of the initial spectra was not critical, the critical initial quantities were the values

of the total energy and helicities). Time-averages of the components of w(k) and b(k) as well as of their

squares (IbrR(k)j 2. R: real, etc.) were taken, averaging every 50 time steps. (There are six 'components'

of w(k) and six of b(k). since the z-, y-. and z-components of these each have a real and an imaginary

part.) The second-order moments which correspond to the same value of k = Iki can be combined to produce
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0

average modal energies

Ek(k)=j- Lu(k)12  and E..(k)= -.- b(k)I2, (13)
2n kFu(k12nk.

where the sum E. is only over all k with the same value of k = Ikj and where nk is the number of wave

vectors k in such a sum. The modal values of enstrophy and mean squared current were then 11 = k2 Ek(k)

and J = k2 Em(k), respectively.

These modal energies can be compared with those obtained from ensemble-averaging, once the various

distribution parameters are found, as described previously. Remember that the distribution parameters for

the Euler cases depended on the average value of the enstrophy fQ, while those for the MHD cases depended

on the average ratio of magnetic to kinetic energy R. For example, in the MHD run MIA, a time-average

yields Rt = 1.50795, equilibrium entropy minimization gives Re = 1.50799, and minimizing the root-mean-

square (rms) error between time- and ensemble-average modal energy spectra produces Rrms = 1,50599. 0

Using the rms values in all cases gives the distribution parameters presented in Table 2.

To see how well the time- and ensemble-averaged modal energy spectra compare, consider Figure 1, where

representative spectra are shown (log =_ log0o in the Figures). Figure la corresponds to case M2A where 0 0

k,nin = 1; the goodness of fit is typical of all the Euler and MHD runs. Figure lb corresponds to case M3A

where krni = 2; the initial values of the w(k) and b(k) for M3A were the same as those of M2A except that

all of the [kj = 1 coefficients were set to zero and not allowed to grow during the simulation. These graphs 0

show the av'erage energy for modes with the same k = Ikl; since there are twice as many mc -Acs with k = 2

as with k = 1, Figures la and lb indicate that the modes with k = kmsn contain the same total energy. The

exact value of krnin is thus not qualitatively important in any given simulation. 0

It is informative to consider the exact values taken by the Fourier modes during their time evolution.

F-,r exzaiple. the values of w(k) and b(k) for k =(1,0,0) for run MIA are shown in Figure 2. where the time

evolution is shown by plotting the real vs the imaginary parts of the coefficients for all times between I = 0

and I = 1000. The behavior is decidedly non-ergodir since the components clearly do not have zero mean

values, and thus do not match the ensemble predict ion. It is interestling to ioto, that alt hough averagen modal

behavior (Figure 1) is essentially as predicted. the detailed evolution of the modal coefficients is not. Also,.

notice in Figure 2 that we appear to have

W¢- - iw; and by .ib (14)

7
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This relationship was also apparent for all the other coefficients which were examined, as long as the coefficient

mean values were sufficiently larger than the corresponding standard deviation. The relationship (14) is, in X"
0

fact, b - V x b, i.e., j x b = 0. In other words, the ideal MHD has become force-free [11], apparently on a

mode-by-mode basis.

The average coefficients w(k) and 16(k) can be thought of as the coherent structure underlying these

simulations of ideal, isotropic turbulence. These coefficients can be used to calculate the coherent energy

present in the turbulence:

Ek)= ( 1 u(k)I1 and E (k)= 16(k)j2, (15)
Sk 

k

(The various helicities can also be calculated in a similar manner.) The average coefficients exist for all cases

at t = 250, so that a comparison can be made; the results of this are presented in Table 3. Notice that the

coherent quantities in Table 3 are a sizeable fraction of the corresponding total quantities in Table 1; for

example. the coherent energy in run MIA is 18.8% of the total energy, while the coherent magnetic helicity

in the same run is 83% of the total!

For those runs which went beyond t = 250, the coherent energies between t = 520 and t = 750 are * *
shown in Figure 3. It is evident that the MHD simulations with B, = 0 (MIA and M2A) have the largest

coherent energies, and that this coherent energy is primarily magnetic. The MHD case with B. = 1 (M4A)

has effectively no coherent energy, while in the Euler case (E2A), the coherent energy is clearly decaying

(although still 3% of the total at t = 750).

5 Broken Symmetry 0

In a Fourier representation (3), the basic equations (1) and (2) take the form

b(k) = ik x E [u(p) x b(q)] + i(k. B0) u(k) (16)

p+q=k 0

&,(k) = ik x E [u(p) x w(q) +j(p) x b(q)] + i(k. Bo) j(k) (17)

p+q=k

These equations have the symmetry (i.e.. invariance under) W(k) - e'k aw(k), b(k) - e'kab(k) which

merely reflects the isotropy of space: i.e.. place x - x + a into (3). However, an average over the displace- 0

ments a merely reproduces the known fact that the k = 0 modes of w and b are zero and remain so. t.r., do

00
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6 Conclusion

In this paper a nume-rical study of 31) Eide-r anid ideal MIHI) trlligcA;L- J'r Ill. Ii

different cases were presented in which the &dvnariiic --ve .1w ii WA.-ýLl- I, t-r ~-r *-I. r 1

length of dimnensionless simulation titiie These results rlt-ark ci. d, %i I-r. [r. i k.--c

non-ergodicity. and coherent structure in ideal 3D Mill) tinrhiletic-

Realistic M11D turbulence (except in superfluiids) is niot ideal ,incre r-sisti j#- ;tri-l - I- r-c. - 1-

energy. Th eut rsented here then addlress. rather than practical &as,- (,III. liejmter'ti .gee1 o iut t;

which fluid and magnetic dissipation can be set identically equal to zero 1cr the-s. smiieilestc-ri r a

the ideal theory provides a very useful means of testing cotmputer codes,

An interesting, open question is: Does the non-ergodic behavior seen in the id-aliigr-c hl-ch

case also occur in real geophysical and astrophysical systerns where dyniamoi act e'e ty ha, hee.-n ft-1-r%.-1 II

An answer to this question.- however, requires the introduction of liss-iliat ion int, ill niiiiirical sreiI?'i

along with a substantial increase in grid size. Although this wa~s beyond the scope of the- prer-%tii wccrk it i-c

a straightforward extension of it,- provided that sufficiently large coniputers can bce sit ilt.ee

Additionally, it should be mentioned that there has been somte very intere".ting work 11i l ;iviiil vtii.

theory concerning broken symmetry [121. A full discuission of aiiy conns-ctio (it teehoe- wtiuier-ical ark ;r-sie-l

here is also beycond the scope of the present work,

Finally. I would like to bhanik IDr .M. VIlussaini feer the opportutiity to Spendiu a year In ric-te-at
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Table 1. Numerical Simulations

Run cpu-sec kmn B. Total Integral Invariants

Time E Hk H, Hým

EIA 0.12 1 - 250 0.5000 -.04443 -

E2A 0.12 1 - 750 0.5000 3.142

E2R 0.25 1 - 250 0.5000 3.142

4 MIA 0.35 1 0 1000 1.000 - 0.1326 0.2129 0

MIR 0.71 1 0 250 1.000 0.1326 0.2129

M2A 0.35 1 0 750 1.000 0.1326 0.09973

M3A 0.35 2 0 250 0.9983 0.1258 0.09899 0

M4A 0.35 1 1 750 1.000 0.1326 -

Table 2. Distribution Parameters

[Run a ) 1 1
EIA 2.624 0.006825 - 17.08

E2A 15.58 -2.062 - 23.74

E2R 15.41 1 -2.035 - 23.79 -

MIA 1.774 -0.7825 -1682 1.506

MIR 1.773 -0.7824 -1.681 - 1506

M2A 1,547 -0.7142 -1 .451 1.206 0

M3A 1.616 -0.7205 -2.131 1.301

M4A 1.401 -0.7075 1.000

11 0



Table 3. Coherency at t = 250

Run E• E•, Hk H [ H

4
E1A 0.00301 - -. 00110 - -

E2A 0.0416 - 0.305 --

E2R 0.0413 - 0.303 - -

MIA 0.0880 0.179 - 0.0364 0.177

MlR 0.0919 0.172 - 0.0365 0.170

M2A 0.00562 0.0656 - 0.0158 0.0635

M3A 0.00464 0.0542 - 0.0126 0.0368

M4A 0.00146 0.00148 - 0.000421 0.0000955

0

12

12

e •• •So q

* 0 0 00 0 o_



0

a) b) 0
1.0 1.0

log[E.(k)] log[E3(k)]

0.5 0.5

0.0- 0.0-

-0.5' -0.51oS[k•k)] l°$[E,(k)]

0.00 0.2o5 10(k)0.50 0.75 0.00 0 .251og(k)0. 50  0.75

Figure 1. Energy spectra for a) M2A and b) M3A; ---- theoretical, - ....... numerical.

6.- a) 20 b$,0.)b)44
4 10-

'2-

0-

-2 b1(,,0,0)
wx(I0,O)-10

- 2 Real 0  2 4 -20 -10 Real 0  10

Figure 2. Components of two vector modes of MIA as they evolve from t =0 to 1000: 0

a) vorticity and b) magnetic field.

*0.5
MIA

.1.0

M2A

20 ........................................ 
A

.2 .5 . . . .. . . . .. .. . . .. .... . . . . . . . . . . . . . . . . . . . . . . . M 2 A

............0........... .... 2M4A

"550 600 650 700 750
Averaging Time 0

Figure 3. Coherent energies: ---- kinetic, -------- magnetic.
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